BangleApps/apps/gipy/app.js

210 lines
6.3 KiB
JavaScript

var lat = null;
var lon = null;
class Path {
constructor(filename) {
let buffer = require("Storage").readArrayBuffer(filename);
this.points = Float64Array(buffer);
this.total_distance = this.segments_length(0, this.len-1);
}
// return cumulated length of wanted segments (in km).
// start is index of first wanted segment
// end is 1 after index of last wanted segment
segments_length(start, end) {
let total = 0.0;
this.on_segments(function(p1, p2, i) {
total += p1.distance(p2);
}, start, end);
return total;
}
// start is index of first wanted segment
// end is 1 after index of last wanted segment
on_segments(op, start, end) {
let previous_point = null;
for(let i = start ; i < end + 1 ; i++) {
let point = new Point(this.points[2*i], this.points[2*i+1]);
if (previous_point !== null) {
op(previous_point, point, i);
}
previous_point = point;
}
}
point(index) {
let lon = this.points[2*index];
let lat = this.points[2*index+1];
return new Point(lon, lat);
}
// return index of segment which is nearest from point
nearest_segment(point, start, end) {
let min_index = 0;
let min_distance = Number.MAX_VALUE;
this.on_segments(function (p1, p2, i) {
let distance = point.fake_distance_to_segment(p1, p2);
if (distance <= min_distance) {
min_distance = distance;
min_index = i-1;
}
}, start, end);
return min_index;
}
get len() {
return this.points.length /2;
}
}
class Point {
constructor(lon, lat) {
this.lon = lon;
this.lat = lat;
}
screen_x() {
return 172/2 + Math.round((this.lon - lon) * 20000.0);
}
screen_y() {
return 172/2 + Math.round((this.lat - lat) * 20000.0);
}
minus(other_point) {
let xdiff = this.lon - other_point.lon;
let ydiff = this.lat - other_point.lat;
return new Point(xdiff, ydiff);
}
plus(other_point) {
return new Point(this.lon + other_point.lon, this.lat + other_point.lat);
}
length_squared(other_point) {
let d = this.minus(other_point);
return (d.lon*d.lon + d.lat*d.lat);
}
times(scalar) {
return new Point(this.lon * scalar, this.lat * scalar);
}
dot(other_point) {
return this.lon * other_point.lon + this.lat * other_point.lat;
}
distance(other_point) {
//see https://www.movable-type.co.uk/scripts/latlong.html
const R = 6371e3; // metres
const phi1 = this.lat * Math.PI/180;
const phi2 = other_point.lat * Math.PI/180;
const deltaphi = (other_point.lat-this.lat) * Math.PI/180;
const deltalambda = (other_point.lon-this.lon) * Math.PI/180;
const a = Math.sin(deltaphi/2) * Math.sin(deltaphi/2) +
Math.cos(phi1) * Math.cos(phi2) *
Math.sin(deltalambda/2) * Math.sin(deltalambda/2);
const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
return R * c; // in metres
}
fake_distance(other_point) {
return Math.sqrt(this.length_squared(other_point));
}
fake_distance_to_segment(v, w) {
// from : https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
// Return minimum distance between line segment vw and point p
let l2 = v.length_squared(w); // i.e. |w-v|^2 - avoid a sqrt
if (l2 == 0.0) {
return this.distance(v); // v == w case
}
// Consider the line extending the segment, parameterized as v + t (w - v).
// We find projection of point p onto the line.
// It falls where t = [(p-v) . (w-v)] / |w-v|^2
// We clamp t from [0,1] to handle points outside the segment vw.
let t = Math.max(0, Math.min(1, (this.minus(v)).dot(w.minus(v)) / l2));
let projection = v.plus((w.minus(v)).times(t)); // Projection falls on the segment
return this.fake_distance(projection);
}
}
function display(path) {
g.clear();
g.setColor(g.theme.fg);
let next_segment = path.nearest_segment(new Point(lon, lat), 0, path.len-1);
let diff;
if (next_segment != current_segment) {
if (next_segment > current_segment) {
diff = path.segments_length(current_segment+1, next_segment+1);
} else {
diff = -path.segments_length(next_segment+1, current_segment+1);
}
remaining_distance -= diff;
current_segment = next_segment;
}
let start = Math.max(current_segment - 5, 0);
let end = Math.min(current_segment + 7, path.len-1);
path.on_segments(function(p1, p2, i) {
let px = p2.screen_x();
let py = p2.screen_y();
if (i == current_segment + 1) {
g.setColor(0.0, 1.0, 0.0);
} else {
g.setColor(1.0, 0.0, 0.0);
}
g.drawLine(
p1.screen_x(),
p1.screen_y(),
px,
py
);
g.setColor(g.theme.fg);
g.fillCircle(px, py, 4);
g.setColor(g.theme.bg);
g.fillCircle(px, py, 3);
}, 0, path.len-1);
g.setColor(g.theme.fgH);
g.fillCircle(172/2, 172/2, 5);
let real_remaining_distance = remaining_distance + path.point(current_segment+1).distance(new Point(lon, lat));
let rounded_distance = Math.round(real_remaining_distance/100)/10;
let total = Math.round(path.total_distance/100)/10;
g.setFont("6x8:2").drawString("d. "+rounded_distance + "/" + total, 0, 30);
g.drawString("seg." + (current_segment+1) + "/" + path.len, 0, 48);
Bangle.drawWidgets();
}
Bangle.loadWidgets();
let path = new Path("test.gpc");
var current_segment = path.nearest_segment(new Point(lon, lat), 0, path.len-1);
var remaining_distance = path.total_distance - path.segments_length(0, 1);
// let fake_gps_point = 0.0;
// function simulate_gps(path) {
// let point_index = Math.floor(fake_gps_point);
// if (point_index >= path.len) {
// return;
// }
// let p1 = path.point(point_index);
// let p2 = path.point(point_index+1);
// let alpha = fake_gps_point - point_index;
//
// lon = (1-alpha)*p1.lon + alpha*p2.lon;
// lat = (1-alpha)*p1.lat + alpha*p2.lat;
// fake_gps_point += 0.2;
// display(path);
// }
//
// setInterval(simulate_gps, 500, path);
function set_coordinates(data) {
let old_lat = lat;
if (!isNaN(data.lat)) {
lat = data.lat;
}
let old_lon = lon;
if (!isNaN(data.lon)) {
lon = data.lon;
}
if ((old_lat != lat)||(old_lon != lon)) {
display(path);
}
}
Bangle.setGPSPower(true, "gipy");
Bangle.on('GPS', set_coordinates);