mirror of https://github.com/espruino/BangleApps
Add files via upload
parent
a11f10d855
commit
5602eadf68
|
@ -0,0 +1,298 @@
|
||||||
|
/* Module suncalc.js
|
||||||
|
(c) 2011-2015, Vladimir Agafonkin
|
||||||
|
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
|
||||||
|
https://github.com/mourner/suncalc
|
||||||
|
|
||||||
|
PB: Usage:
|
||||||
|
E.setTimeZone(2); // 1 = MEZ, 2 = MESZ
|
||||||
|
SunCalc = require("suncalc.js");
|
||||||
|
pos = SunCalc.getPosition(Date.now(), 53.3, 10.1);
|
||||||
|
times = SunCalc.getTimes(Date.now(), 53.3, 10.1);
|
||||||
|
rise = times.sunrise; // Date object
|
||||||
|
rise_str = rise.getHours() + ':' + rise.getMinutes(); //hh:mm
|
||||||
|
*/
|
||||||
|
var exports={};
|
||||||
|
|
||||||
|
// shortcuts for easier to read formulas
|
||||||
|
|
||||||
|
var PI = Math.PI,
|
||||||
|
sin = Math.sin,
|
||||||
|
cos = Math.cos,
|
||||||
|
tan = Math.tan,
|
||||||
|
asin = Math.asin,
|
||||||
|
atan = Math.atan2,
|
||||||
|
acos = Math.acos,
|
||||||
|
rad = PI / 180;
|
||||||
|
|
||||||
|
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
|
||||||
|
|
||||||
|
// date/time constants and conversions
|
||||||
|
|
||||||
|
var dayMs = 1000 * 60 * 60 * 24,
|
||||||
|
J1970 = 2440588,
|
||||||
|
J2000 = 2451545;
|
||||||
|
|
||||||
|
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
|
||||||
|
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); } // PB: onece removed + 0.5; included it again 4 Jan 2021
|
||||||
|
function toDays(date) { return toJulian(date) - J2000; }
|
||||||
|
|
||||||
|
|
||||||
|
// general calculations for position
|
||||||
|
|
||||||
|
var e = rad * 23.4397; // obliquity of the Earth
|
||||||
|
|
||||||
|
function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
|
||||||
|
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
|
||||||
|
|
||||||
|
function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
|
||||||
|
function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
|
||||||
|
|
||||||
|
function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
|
||||||
|
|
||||||
|
function astroRefraction(h) {
|
||||||
|
if (h < 0) // the following formula works for positive altitudes only.
|
||||||
|
h = 0; // if h = -0.08901179 a div/0 would occur.
|
||||||
|
|
||||||
|
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||||
|
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
|
||||||
|
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
|
||||||
|
}
|
||||||
|
|
||||||
|
// general sun calculations
|
||||||
|
|
||||||
|
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
|
||||||
|
|
||||||
|
function eclipticLongitude(M) {
|
||||||
|
|
||||||
|
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
|
||||||
|
P = rad * 102.9372; // perihelion of the Earth
|
||||||
|
|
||||||
|
return M + C + P + PI;
|
||||||
|
}
|
||||||
|
|
||||||
|
function sunCoords(d) {
|
||||||
|
|
||||||
|
var M = solarMeanAnomaly(d),
|
||||||
|
L = eclipticLongitude(M);
|
||||||
|
|
||||||
|
return {
|
||||||
|
dec: declination(L, 0),
|
||||||
|
ra: rightAscension(L, 0)
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculates sun position for a given date and latitude/longitude
|
||||||
|
|
||||||
|
exports.getPosition = function (date, lat, lng) {
|
||||||
|
|
||||||
|
var lw = rad * -lng,
|
||||||
|
phi = rad * lat,
|
||||||
|
d = toDays(date),
|
||||||
|
|
||||||
|
c = sunCoords(d),
|
||||||
|
H = siderealTime(d, lw) - c.ra;
|
||||||
|
|
||||||
|
return {
|
||||||
|
azimuth: Math.round((azimuth(H, phi, c.dec) / rad + 180) % 360), // PB: converted to deg
|
||||||
|
altitude: Math.round( altitude(H, phi, c.dec) / rad) // PB: converted to deg
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// sun times configuration (angle, morning name, evening name)
|
||||||
|
|
||||||
|
var times = [
|
||||||
|
[-0.833, 'sunrise', 'sunset' ]
|
||||||
|
];
|
||||||
|
|
||||||
|
// calculations for sun times
|
||||||
|
var J0 = 0.0009;
|
||||||
|
|
||||||
|
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
|
||||||
|
|
||||||
|
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
|
||||||
|
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
|
||||||
|
|
||||||
|
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
|
||||||
|
function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
|
||||||
|
|
||||||
|
// returns set time for the given sun altitude
|
||||||
|
function getSetJ(h, lw, phi, dec, n, M, L) {
|
||||||
|
|
||||||
|
var w = hourAngle(h, phi, dec),
|
||||||
|
a = approxTransit(w, lw, n);
|
||||||
|
return solarTransitJ(a, M, L);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// calculates sun times for a given date, latitude/longitude, and, optionally,
|
||||||
|
// the observer height (in meters) relative to the horizon
|
||||||
|
|
||||||
|
exports.getTimes = function (date, lat, lng, height) {
|
||||||
|
|
||||||
|
height = height || 0;
|
||||||
|
|
||||||
|
var lw = rad * -lng,
|
||||||
|
phi = rad * lat,
|
||||||
|
|
||||||
|
dh = observerAngle(height),
|
||||||
|
|
||||||
|
d = toDays(date),
|
||||||
|
n = julianCycle(d, lw),
|
||||||
|
ds = approxTransit(0, lw, n),
|
||||||
|
|
||||||
|
M = solarMeanAnomaly(ds),
|
||||||
|
L = eclipticLongitude(M),
|
||||||
|
dec = declination(L, 0),
|
||||||
|
|
||||||
|
Jnoon = solarTransitJ(ds, M, L),
|
||||||
|
|
||||||
|
i, len, time, h0, Jset, Jrise;
|
||||||
|
|
||||||
|
|
||||||
|
var result = {
|
||||||
|
solarNoon: fromJulian(Jnoon),
|
||||||
|
nadir: fromJulian(Jnoon - 0.5)
|
||||||
|
};
|
||||||
|
|
||||||
|
for (i = 0, len = times.length; i < len; i += 1) {
|
||||||
|
time = times[i];
|
||||||
|
h0 = (time[0] + dh) * rad;
|
||||||
|
|
||||||
|
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
|
||||||
|
Jrise = Jnoon - (Jset - Jnoon);
|
||||||
|
|
||||||
|
result[time[1]] = fromJulian(Jrise);
|
||||||
|
result[time[2]] = fromJulian(Jset);
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
|
||||||
|
|
||||||
|
function moonCoords(d) { // geocentric ecliptic coordinates of the moon
|
||||||
|
|
||||||
|
var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
|
||||||
|
M = rad * (134.963 + 13.064993 * d), // mean anomaly
|
||||||
|
F = rad * (93.272 + 13.229350 * d), // mean distance
|
||||||
|
|
||||||
|
l = L + rad * 6.289 * sin(M), // longitude
|
||||||
|
b = rad * 5.128 * sin(F), // latitude
|
||||||
|
dt = 385001 - 20905 * cos(M); // distance to the moon in km
|
||||||
|
|
||||||
|
return {
|
||||||
|
ra: rightAscension(l, b),
|
||||||
|
dec: declination(l, b),
|
||||||
|
dist: dt
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
getMoonPosition = function (date, lat, lng) {
|
||||||
|
|
||||||
|
var lw = rad * -lng,
|
||||||
|
phi = rad * lat,
|
||||||
|
d = toDays(date),
|
||||||
|
|
||||||
|
c = moonCoords(d),
|
||||||
|
H = siderealTime(d, lw) - c.ra,
|
||||||
|
h = altitude(H, phi, c.dec),
|
||||||
|
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||||
|
pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
|
||||||
|
|
||||||
|
h = h + astroRefraction(h); // altitude correction for refraction
|
||||||
|
|
||||||
|
return {
|
||||||
|
azimuth: azimuth(H, phi, c.dec),
|
||||||
|
altitude: h,
|
||||||
|
distance: c.dist,
|
||||||
|
parallacticAngle: pa
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// calculations for illumination parameters of the moon,
|
||||||
|
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
|
||||||
|
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||||
|
|
||||||
|
getMoonIllumination = function (date) {
|
||||||
|
|
||||||
|
var d = toDays(date || new Date()),
|
||||||
|
s = sunCoords(d),
|
||||||
|
m = moonCoords(d),
|
||||||
|
|
||||||
|
sdist = 149598000, // distance from Earth to Sun in km
|
||||||
|
|
||||||
|
phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
|
||||||
|
inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
|
||||||
|
angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) -
|
||||||
|
cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
|
||||||
|
|
||||||
|
return {
|
||||||
|
fraction: (1 + cos(inc)) / 2,
|
||||||
|
phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
|
||||||
|
angle: angle
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
function hoursLater(date, h) {
|
||||||
|
return new Date(date.valueOf() + h * dayMs / 24);
|
||||||
|
}
|
||||||
|
|
||||||
|
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
|
||||||
|
|
||||||
|
getMoonTimes = function (date, lat, lng, inUTC) {
|
||||||
|
var t = new Date(date);
|
||||||
|
if (inUTC) t.setUTCHours(0, 0, 0, 0);
|
||||||
|
else t.setHours(0, 0, 0, 0);
|
||||||
|
|
||||||
|
var hc = 0.133 * rad,
|
||||||
|
h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc,
|
||||||
|
h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
|
||||||
|
|
||||||
|
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
|
||||||
|
for (var i = 1; i <= 24; i += 2) {
|
||||||
|
h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
|
||||||
|
h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
|
||||||
|
|
||||||
|
a = (h0 + h2) / 2 - h1;
|
||||||
|
b = (h2 - h0) / 2;
|
||||||
|
xe = -b / (2 * a);
|
||||||
|
ye = (a * xe + b) * xe + h1;
|
||||||
|
d = b * b - 4 * a * h1;
|
||||||
|
roots = 0;
|
||||||
|
|
||||||
|
if (d >= 0) {
|
||||||
|
dx = Math.sqrt(d) / (Math.abs(a) * 2);
|
||||||
|
x1 = xe - dx;
|
||||||
|
x2 = xe + dx;
|
||||||
|
if (Math.abs(x1) <= 1) roots++;
|
||||||
|
if (Math.abs(x2) <= 1) roots++;
|
||||||
|
if (x1 < -1) x1 = x2;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (roots === 1) {
|
||||||
|
if (h0 < 0) rise = i + x1;
|
||||||
|
else set = i + x1;
|
||||||
|
|
||||||
|
} else if (roots === 2) {
|
||||||
|
rise = i + (ye < 0 ? x2 : x1);
|
||||||
|
set = i + (ye < 0 ? x1 : x2);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (rise && set) break;
|
||||||
|
|
||||||
|
h0 = h2;
|
||||||
|
}
|
||||||
|
|
||||||
|
var result = {};
|
||||||
|
|
||||||
|
if (rise) result.rise = hoursLater(t, rise);
|
||||||
|
if (set) result.set = hoursLater(t, set);
|
||||||
|
|
||||||
|
if (!rise && !set) result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
};
|
Loading…
Reference in New Issue