mirror of https://github.com/espruino/BangleApps
Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
parent
7b18f54a76
commit
00a022c7c1
|
@ -1,2 +1,3 @@
|
|||
0.01: Create astrocalc app
|
||||
0.02: Store last GPS lock, can be used instead of waiting for new GPS on start
|
||||
0.03: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
|
@ -9,7 +9,7 @@
|
|||
* Calculate the Sun and Moon positions based on watch GPS and display graphically
|
||||
*/
|
||||
|
||||
const SunCalc = require("suncalc.js");
|
||||
const SunCalc = require("suncalc"); // from modules folder
|
||||
const storage = require("Storage");
|
||||
const LAST_GPS_FILE = "astrocalc.gps.json";
|
||||
let lastGPS = (storage.readJSON(LAST_GPS_FILE, 1) || null);
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"id": "astrocalc",
|
||||
"name": "Astrocalc",
|
||||
"version": "0.02",
|
||||
"version": "0.03",
|
||||
"description": "Calculates interesting information on the sun and moon cycles for the current day based on your location.",
|
||||
"icon": "astrocalc.png",
|
||||
"tags": "app,sun,moon,cycles,tool,outdoors",
|
||||
|
@ -9,7 +9,6 @@
|
|||
"allow_emulator": true,
|
||||
"storage": [
|
||||
{"name":"astrocalc.app.js","url":"astrocalc-app.js"},
|
||||
{"name":"suncalc.js","url":"suncalc.js"},
|
||||
{"name":"astrocalc.img","url":"astrocalc-icon.js","evaluate":true},
|
||||
{"name":"first-quarter.img","url":"first-quarter-icon.js","evaluate":true},
|
||||
{"name":"last-quarter.img","url":"last-quarter-icon.js","evaluate":true},
|
||||
|
|
|
@ -1,328 +0,0 @@
|
|||
/*
|
||||
(c) 2011-2015, Vladimir Agafonkin
|
||||
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
|
||||
https://github.com/mourner/suncalc
|
||||
*/
|
||||
|
||||
(function () { 'use strict';
|
||||
|
||||
// shortcuts for easier to read formulas
|
||||
|
||||
var PI = Math.PI,
|
||||
sin = Math.sin,
|
||||
cos = Math.cos,
|
||||
tan = Math.tan,
|
||||
asin = Math.asin,
|
||||
atan = Math.atan2,
|
||||
acos = Math.acos,
|
||||
rad = PI / 180;
|
||||
|
||||
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
|
||||
|
||||
|
||||
// date/time constants and conversions
|
||||
|
||||
var dayMs = 1000 * 60 * 60 * 24,
|
||||
J1970 = 2440588,
|
||||
J2000 = 2451545;
|
||||
|
||||
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
|
||||
function fromJulian(j) { return (j + 0.5 - J1970) * dayMs; }
|
||||
function toDays(date) { return toJulian(date) - J2000; }
|
||||
|
||||
|
||||
// general calculations for position
|
||||
|
||||
var e = rad * 23.4397; // obliquity of the Earth
|
||||
|
||||
function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
|
||||
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
|
||||
|
||||
function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
|
||||
function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
|
||||
|
||||
function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
|
||||
|
||||
function astroRefraction(h) {
|
||||
if (h < 0) // the following formula works for positive altitudes only.
|
||||
h = 0; // if h = -0.08901179 a div/0 would occur.
|
||||
|
||||
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
|
||||
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
|
||||
}
|
||||
|
||||
// general sun calculations
|
||||
|
||||
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
|
||||
|
||||
function eclipticLongitude(M) {
|
||||
|
||||
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
|
||||
P = rad * 102.9372; // perihelion of the Earth
|
||||
|
||||
return M + C + P + PI;
|
||||
}
|
||||
|
||||
function sunCoords(d) {
|
||||
|
||||
var M = solarMeanAnomaly(d),
|
||||
L = eclipticLongitude(M);
|
||||
|
||||
return {
|
||||
dec: declination(L, 0),
|
||||
ra: rightAscension(L, 0)
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
var SunCalc = {};
|
||||
|
||||
|
||||
// calculates sun position for a given date and latitude/longitude
|
||||
|
||||
SunCalc.getPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
d = toDays(date),
|
||||
|
||||
c = sunCoords(d),
|
||||
H = siderealTime(d, lw) - c.ra;
|
||||
|
||||
return {
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: altitude(H, phi, c.dec)
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// sun times configuration (angle, morning name, evening name)
|
||||
|
||||
var times = SunCalc.times = [
|
||||
[-0.833, 'sunrise', 'sunset' ],
|
||||
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
|
||||
[ -6, 'dawn', 'dusk' ],
|
||||
[ -12, 'nauticalDawn', 'nauticalDusk'],
|
||||
[ -18, 'nightEnd', 'night' ],
|
||||
[ 6, 'goldenHourEnd', 'goldenHour' ]
|
||||
];
|
||||
|
||||
// adds a custom time to the times config
|
||||
|
||||
SunCalc.addTime = function (angle, riseName, setName) {
|
||||
times.push([angle, riseName, setName]);
|
||||
};
|
||||
|
||||
|
||||
// calculations for sun times
|
||||
|
||||
var J0 = 0.0009;
|
||||
|
||||
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
|
||||
|
||||
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
|
||||
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
|
||||
|
||||
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
|
||||
function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
|
||||
|
||||
// returns set time for the given sun altitude
|
||||
function getSetJ(h, lw, phi, dec, n, M, L) {
|
||||
|
||||
var w = hourAngle(h, phi, dec),
|
||||
a = approxTransit(w, lw, n);
|
||||
return solarTransitJ(a, M, L);
|
||||
}
|
||||
|
||||
|
||||
// calculates sun times for a given date, latitude/longitude, and, optionally,
|
||||
// the observer height (in meters) relative to the horizon
|
||||
|
||||
SunCalc.getTimes = function (date, lat, lng, height) {
|
||||
|
||||
height = height || 0;
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
|
||||
dh = observerAngle(height),
|
||||
|
||||
d = toDays(date),
|
||||
n = julianCycle(d, lw),
|
||||
ds = approxTransit(0, lw, n),
|
||||
|
||||
M = solarMeanAnomaly(ds),
|
||||
L = eclipticLongitude(M),
|
||||
dec = declination(L, 0),
|
||||
|
||||
Jnoon = solarTransitJ(ds, M, L),
|
||||
|
||||
i, len, time, h0, Jset, Jrise;
|
||||
|
||||
|
||||
var result = {
|
||||
solarNoon: new Date(fromJulian(Jnoon)),
|
||||
nadir: new Date(fromJulian(Jnoon - 0.5))
|
||||
};
|
||||
|
||||
for (i = 0, len = times.length; i < len; i += 1) {
|
||||
time = times[i];
|
||||
h0 = (time[0] + dh) * rad;
|
||||
|
||||
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
|
||||
Jrise = Jnoon - (Jset - Jnoon);
|
||||
|
||||
result[time[1]] = new Date(fromJulian(Jrise) - (dayMs / 2));
|
||||
result[time[2]] = new Date(fromJulian(Jset) + (dayMs / 2));
|
||||
}
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
// moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
|
||||
|
||||
function moonCoords(d) { // geocentric ecliptic coordinates of the moon
|
||||
|
||||
var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
|
||||
M = rad * (134.963 + 13.064993 * d), // mean anomaly
|
||||
F = rad * (93.272 + 13.229350 * d), // mean distance
|
||||
|
||||
l = L + rad * 6.289 * sin(M), // longitude
|
||||
b = rad * 5.128 * sin(F), // latitude
|
||||
dt = 385001 - 20905 * cos(M); // distance to the moon in km
|
||||
|
||||
return {
|
||||
ra: rightAscension(l, b),
|
||||
dec: declination(l, b),
|
||||
dist: dt
|
||||
};
|
||||
}
|
||||
|
||||
SunCalc.getMoonPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
d = toDays(date),
|
||||
|
||||
c = moonCoords(d),
|
||||
H = siderealTime(d, lw) - c.ra,
|
||||
h = altitude(H, phi, c.dec),
|
||||
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
|
||||
|
||||
h = h + astroRefraction(h); // altitude correction for refraction
|
||||
|
||||
return {
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: h,
|
||||
distance: c.dist,
|
||||
parallacticAngle: pa
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// calculations for illumination parameters of the moon,
|
||||
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
|
||||
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
|
||||
// Function updated from gist: https://gist.github.com/endel/dfe6bb2fbe679781948c
|
||||
|
||||
SunCalc.getMoonIllumination = function (date) {
|
||||
let month = date.getMonth();
|
||||
let year = date.getFullYear();
|
||||
let day = date.getDate();
|
||||
|
||||
let c = 0;
|
||||
let e = 0;
|
||||
let jd = 0;
|
||||
let b = 0;
|
||||
|
||||
if (month < 3) {
|
||||
year--;
|
||||
month += 12;
|
||||
}
|
||||
|
||||
++month;
|
||||
c = 365.25 * year;
|
||||
e = 30.6 * month;
|
||||
jd = c + e + day - 694039.09; // jd is total days elapsed
|
||||
jd /= 29.5305882; // divide by the moon cycle
|
||||
b = parseInt(jd); // int(jd) -> b, take integer part of jd
|
||||
jd -= b; // subtract integer part to leave fractional part of original jd
|
||||
b = Math.round(jd * 8); // scale fraction from 0-8 and round
|
||||
|
||||
if (b >= 8) b = 0; // 0 and 8 are the same so turn 8 into 0
|
||||
|
||||
return {phase: b};
|
||||
};
|
||||
|
||||
|
||||
function hoursLater(date, h) {
|
||||
return new Date(date.valueOf() + h * dayMs / 24);
|
||||
}
|
||||
|
||||
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
|
||||
|
||||
SunCalc.getMoonTimes = function (date, lat, lng, inUTC) {
|
||||
var t = date;
|
||||
if (inUTC) t.setUTCHours(0, 0, 0, 0);
|
||||
else t.setHours(0, 0, 0, 0);
|
||||
|
||||
var hc = 0.133 * rad,
|
||||
h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc,
|
||||
h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
|
||||
|
||||
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
|
||||
for (var i = 1; i <= 24; i += 2) {
|
||||
h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
|
||||
h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
|
||||
|
||||
a = (h0 + h2) / 2 - h1;
|
||||
b = (h2 - h0) / 2;
|
||||
xe = -b / (2 * a);
|
||||
ye = (a * xe + b) * xe + h1;
|
||||
d = b * b - 4 * a * h1;
|
||||
roots = 0;
|
||||
|
||||
if (d >= 0) {
|
||||
dx = Math.sqrt(d) / (Math.abs(a) * 2);
|
||||
x1 = xe - dx;
|
||||
x2 = xe + dx;
|
||||
if (Math.abs(x1) <= 1) roots++;
|
||||
if (Math.abs(x2) <= 1) roots++;
|
||||
if (x1 < -1) x1 = x2;
|
||||
}
|
||||
|
||||
if (roots === 1) {
|
||||
if (h0 < 0) rise = i + x1;
|
||||
else set = i + x1;
|
||||
|
||||
} else if (roots === 2) {
|
||||
rise = i + (ye < 0 ? x2 : x1);
|
||||
set = i + (ye < 0 ? x1 : x2);
|
||||
}
|
||||
|
||||
if (rise && set) break;
|
||||
|
||||
h0 = h2;
|
||||
}
|
||||
|
||||
var result = {};
|
||||
|
||||
if (rise) result.rise = hoursLater(t, rise);
|
||||
if (set) result.set = hoursLater(t, set);
|
||||
|
||||
if (!rise && !set) result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
// export as Node module / AMD module / browser variable
|
||||
if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
|
||||
else if (typeof define === 'function' && define.amd) define(SunCalc);
|
||||
else global.SunCalc = SunCalc;
|
||||
|
||||
}());
|
|
@ -6,3 +6,4 @@
|
|||
0.06: better contrast for light theme, use fg color instead of dithered for ring
|
||||
0.07: Use default Bangle formatter for booleans
|
||||
0.08: fix idle timer always getting set to true
|
||||
0.09: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
var SunCalc = require("https://raw.githubusercontent.com/mourner/suncalc/master/suncalc.js");
|
||||
var SunCalc = require("suncalc"); // from modules folder
|
||||
const storage = require('Storage');
|
||||
const locale = require("locale");
|
||||
const SETTINGS_FILE = "daisy.json";
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
{ "id": "daisy",
|
||||
"name": "Daisy",
|
||||
"version":"0.08",
|
||||
"version":"0.09",
|
||||
"dependencies": {"mylocation":"app"},
|
||||
"description": "A beautiful digital clock with large ring guage, idle timer and a cyclic information line that includes, day, date, steps, battery, sunrise and sunset times",
|
||||
"icon": "app.png",
|
||||
|
|
|
@ -12,3 +12,4 @@
|
|||
0.26: BJS2: Swipe down to rotate 180 degree
|
||||
0.27: BJS2: Changed swipe down to swipe up
|
||||
0.28: Reverted changes to implementation of 0.25
|
||||
0.29: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
|
@ -46,7 +46,7 @@ var offsets = require("Storage").readJSON("hworldclock.settings.json") || [];
|
|||
//=======Sun
|
||||
setting = require("Storage").readJSON("setting.json",1);
|
||||
E.setTimeZone(setting.timezone); // timezone = 1 for MEZ, = 2 for MESZ
|
||||
SunCalc = require("hsuncalc.js");
|
||||
SunCalc = require("suncalc"); // from modules folder
|
||||
const LOCATION_FILE = "mylocation.json";
|
||||
var rise = "read";
|
||||
var set = "...";
|
||||
|
@ -141,11 +141,9 @@ function getCurrentTimeFromOffset(dt, offset) {
|
|||
function updatePos() {
|
||||
coord = require("Storage").readJSON(LOCATION_FILE,1)|| {"lat":0,"lon":0,"location":"-"}; //{"lat":53.3,"lon":10.1,"location":"Pattensen"};
|
||||
if (coord.lat != 0 && coord.lon != 0) {
|
||||
//pos = SunCalc.getPosition(Date.now(), coord.lat, coord.lon);
|
||||
times = SunCalc.getTimes(Date.now(), coord.lat, coord.lon);
|
||||
rise = "^" + times.sunrise.toString().split(" ")[4].substr(0,5);
|
||||
set = "v" + times.sunset.toString().split(" ")[4].substr(0,5);
|
||||
//noonpos = SunCalc.getPosition(times.solarNoon, coord.lat, coord.lon);
|
||||
} else {
|
||||
rise = null;
|
||||
set = null;
|
||||
|
|
|
@ -1,298 +0,0 @@
|
|||
/* Module suncalc.js
|
||||
(c) 2011-2015, Vladimir Agafonkin
|
||||
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
|
||||
https://github.com/mourner/suncalc
|
||||
|
||||
PB: Usage:
|
||||
E.setTimeZone(2); // 1 = MEZ, 2 = MESZ
|
||||
SunCalc = require("suncalc.js");
|
||||
pos = SunCalc.getPosition(Date.now(), 53.3, 10.1);
|
||||
times = SunCalc.getTimes(Date.now(), 53.3, 10.1);
|
||||
rise = times.sunrise; // Date object
|
||||
rise_str = rise.getHours() + ':' + rise.getMinutes(); //hh:mm
|
||||
*/
|
||||
var exports={};
|
||||
|
||||
// shortcuts for easier to read formulas
|
||||
|
||||
var PI = Math.PI,
|
||||
sin = Math.sin,
|
||||
cos = Math.cos,
|
||||
tan = Math.tan,
|
||||
asin = Math.asin,
|
||||
atan = Math.atan2,
|
||||
acos = Math.acos,
|
||||
rad = PI / 180;
|
||||
|
||||
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
|
||||
|
||||
// date/time constants and conversions
|
||||
|
||||
var dayMs = 1000 * 60 * 60 * 24,
|
||||
J1970 = 2440588,
|
||||
J2000 = 2451545;
|
||||
|
||||
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
|
||||
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); } // PB: onece removed + 0.5; included it again 4 Jan 2021
|
||||
function toDays(date) { return toJulian(date) - J2000; }
|
||||
|
||||
|
||||
// general calculations for position
|
||||
|
||||
var e = rad * 23.4397; // obliquity of the Earth
|
||||
|
||||
function rightAscension(l, b) { return atan(sin(l) * cos(e) - tan(b) * sin(e), cos(l)); }
|
||||
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
|
||||
|
||||
function azimuth(H, phi, dec) { return atan(sin(H), cos(H) * sin(phi) - tan(dec) * cos(phi)); }
|
||||
function altitude(H, phi, dec) { return asin(sin(phi) * sin(dec) + cos(phi) * cos(dec) * cos(H)); }
|
||||
|
||||
function siderealTime(d, lw) { return rad * (280.16 + 360.9856235 * d) - lw; }
|
||||
|
||||
function astroRefraction(h) {
|
||||
if (h < 0) // the following formula works for positive altitudes only.
|
||||
h = 0; // if h = -0.08901179 a div/0 would occur.
|
||||
|
||||
// formula 16.4 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
// 1.02 / tan(h + 10.26 / (h + 5.10)) h in degrees, result in arc minutes -> converted to rad:
|
||||
return 0.0002967 / Math.tan(h + 0.00312536 / (h + 0.08901179));
|
||||
}
|
||||
|
||||
// general sun calculations
|
||||
|
||||
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
|
||||
|
||||
function eclipticLongitude(M) {
|
||||
|
||||
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
|
||||
P = rad * 102.9372; // perihelion of the Earth
|
||||
|
||||
return M + C + P + PI;
|
||||
}
|
||||
|
||||
function sunCoords(d) {
|
||||
|
||||
var M = solarMeanAnomaly(d),
|
||||
L = eclipticLongitude(M);
|
||||
|
||||
return {
|
||||
dec: declination(L, 0),
|
||||
ra: rightAscension(L, 0)
|
||||
};
|
||||
}
|
||||
|
||||
// calculates sun position for a given date and latitude/longitude
|
||||
|
||||
exports.getPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
d = toDays(date),
|
||||
|
||||
c = sunCoords(d),
|
||||
H = siderealTime(d, lw) - c.ra;
|
||||
|
||||
return {
|
||||
azimuth: Math.round((azimuth(H, phi, c.dec) / rad + 180) % 360), // PB: converted to deg
|
||||
altitude: Math.round( altitude(H, phi, c.dec) / rad) // PB: converted to deg
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// sun times configuration (angle, morning name, evening name)
|
||||
|
||||
var times = [
|
||||
[-0.833, 'sunrise', 'sunset' ]
|
||||
];
|
||||
|
||||
// calculations for sun times
|
||||
var J0 = 0.0009;
|
||||
|
||||
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
|
||||
|
||||
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
|
||||
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
|
||||
|
||||
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
|
||||
function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
|
||||
|
||||
// returns set time for the given sun altitude
|
||||
function getSetJ(h, lw, phi, dec, n, M, L) {
|
||||
|
||||
var w = hourAngle(h, phi, dec),
|
||||
a = approxTransit(w, lw, n);
|
||||
return solarTransitJ(a, M, L);
|
||||
}
|
||||
|
||||
|
||||
// calculates sun times for a given date, latitude/longitude, and, optionally,
|
||||
// the observer height (in meters) relative to the horizon
|
||||
|
||||
exports.getTimes = function (date, lat, lng, height) {
|
||||
|
||||
height = height || 0;
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
|
||||
dh = observerAngle(height),
|
||||
|
||||
d = toDays(date),
|
||||
n = julianCycle(d, lw),
|
||||
ds = approxTransit(0, lw, n),
|
||||
|
||||
M = solarMeanAnomaly(ds),
|
||||
L = eclipticLongitude(M),
|
||||
dec = declination(L, 0),
|
||||
|
||||
Jnoon = solarTransitJ(ds, M, L),
|
||||
|
||||
i, len, time, h0, Jset, Jrise;
|
||||
|
||||
|
||||
var result = {
|
||||
solarNoon: fromJulian(Jnoon),
|
||||
nadir: fromJulian(Jnoon - 0.5)
|
||||
};
|
||||
|
||||
for (i = 0, len = times.length; i < len; i += 1) {
|
||||
time = times[i];
|
||||
h0 = (time[0] + dh) * rad;
|
||||
|
||||
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
|
||||
Jrise = Jnoon - (Jset - Jnoon);
|
||||
|
||||
result[time[1]] = fromJulian(Jrise);
|
||||
result[time[2]] = fromJulian(Jset);
|
||||
}
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
// moon calculations, based on http://aa.quae.nl/en/reken/hemelpositie.html formulas
|
||||
|
||||
function moonCoords(d) { // geocentric ecliptic coordinates of the moon
|
||||
|
||||
var L = rad * (218.316 + 13.176396 * d), // ecliptic longitude
|
||||
M = rad * (134.963 + 13.064993 * d), // mean anomaly
|
||||
F = rad * (93.272 + 13.229350 * d), // mean distance
|
||||
|
||||
l = L + rad * 6.289 * sin(M), // longitude
|
||||
b = rad * 5.128 * sin(F), // latitude
|
||||
dt = 385001 - 20905 * cos(M); // distance to the moon in km
|
||||
|
||||
return {
|
||||
ra: rightAscension(l, b),
|
||||
dec: declination(l, b),
|
||||
dist: dt
|
||||
};
|
||||
}
|
||||
|
||||
getMoonPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
d = toDays(date),
|
||||
|
||||
c = moonCoords(d),
|
||||
H = siderealTime(d, lw) - c.ra,
|
||||
h = altitude(H, phi, c.dec),
|
||||
// formula 14.1 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
pa = atan(sin(H), tan(phi) * cos(c.dec) - sin(c.dec) * cos(H));
|
||||
|
||||
h = h + astroRefraction(h); // altitude correction for refraction
|
||||
|
||||
return {
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: h,
|
||||
distance: c.dist,
|
||||
parallacticAngle: pa
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// calculations for illumination parameters of the moon,
|
||||
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
|
||||
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
|
||||
getMoonIllumination = function (date) {
|
||||
|
||||
var d = toDays(date || new Date()),
|
||||
s = sunCoords(d),
|
||||
m = moonCoords(d),
|
||||
|
||||
sdist = 149598000, // distance from Earth to Sun in km
|
||||
|
||||
phi = acos(sin(s.dec) * sin(m.dec) + cos(s.dec) * cos(m.dec) * cos(s.ra - m.ra)),
|
||||
inc = atan(sdist * sin(phi), m.dist - sdist * cos(phi)),
|
||||
angle = atan(cos(s.dec) * sin(s.ra - m.ra), sin(s.dec) * cos(m.dec) -
|
||||
cos(s.dec) * sin(m.dec) * cos(s.ra - m.ra));
|
||||
|
||||
return {
|
||||
fraction: (1 + cos(inc)) / 2,
|
||||
phase: 0.5 + 0.5 * inc * (angle < 0 ? -1 : 1) / Math.PI,
|
||||
angle: angle
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
function hoursLater(date, h) {
|
||||
return new Date(date.valueOf() + h * dayMs / 24);
|
||||
}
|
||||
|
||||
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
|
||||
|
||||
getMoonTimes = function (date, lat, lng, inUTC) {
|
||||
var t = new Date(date);
|
||||
if (inUTC) t.setUTCHours(0, 0, 0, 0);
|
||||
else t.setHours(0, 0, 0, 0);
|
||||
|
||||
var hc = 0.133 * rad,
|
||||
h0 = SunCalc.getMoonPosition(t, lat, lng).altitude - hc,
|
||||
h1, h2, rise, set, a, b, xe, ye, d, roots, x1, x2, dx;
|
||||
|
||||
// go in 2-hour chunks, each time seeing if a 3-point quadratic curve crosses zero (which means rise or set)
|
||||
for (var i = 1; i <= 24; i += 2) {
|
||||
h1 = SunCalc.getMoonPosition(hoursLater(t, i), lat, lng).altitude - hc;
|
||||
h2 = SunCalc.getMoonPosition(hoursLater(t, i + 1), lat, lng).altitude - hc;
|
||||
|
||||
a = (h0 + h2) / 2 - h1;
|
||||
b = (h2 - h0) / 2;
|
||||
xe = -b / (2 * a);
|
||||
ye = (a * xe + b) * xe + h1;
|
||||
d = b * b - 4 * a * h1;
|
||||
roots = 0;
|
||||
|
||||
if (d >= 0) {
|
||||
dx = Math.sqrt(d) / (Math.abs(a) * 2);
|
||||
x1 = xe - dx;
|
||||
x2 = xe + dx;
|
||||
if (Math.abs(x1) <= 1) roots++;
|
||||
if (Math.abs(x2) <= 1) roots++;
|
||||
if (x1 < -1) x1 = x2;
|
||||
}
|
||||
|
||||
if (roots === 1) {
|
||||
if (h0 < 0) rise = i + x1;
|
||||
else set = i + x1;
|
||||
|
||||
} else if (roots === 2) {
|
||||
rise = i + (ye < 0 ? x2 : x1);
|
||||
set = i + (ye < 0 ? x1 : x2);
|
||||
}
|
||||
|
||||
if (rise && set) break;
|
||||
|
||||
h0 = h2;
|
||||
}
|
||||
|
||||
var result = {};
|
||||
|
||||
if (rise) result.rise = hoursLater(t, rise);
|
||||
if (set) result.set = hoursLater(t, set);
|
||||
|
||||
if (!rise && !set) result[ye > 0 ? 'alwaysUp' : 'alwaysDown'] = true;
|
||||
|
||||
return result;
|
||||
};
|
|
@ -2,7 +2,7 @@
|
|||
"id": "hworldclock",
|
||||
"name": "Hanks World Clock",
|
||||
"shortName": "Hanks World Clock",
|
||||
"version": "0.28",
|
||||
"version": "0.29",
|
||||
"description": "Current time zone plus up to three others",
|
||||
"allow_emulator":true,
|
||||
"icon": "app.png",
|
||||
|
@ -15,8 +15,7 @@
|
|||
"storage": [
|
||||
{"name":"hworldclock.app.js","url":"app.js"},
|
||||
{"name":"hworldclock.img","url":"hworldclock-icon.js","evaluate":true},
|
||||
{"name":"hworldclock.settings.js","url":"settings.js"},
|
||||
{"name":"hsuncalc.js","url":"hsuncalc.js"}
|
||||
{"name":"hworldclock.settings.js","url":"settings.js"}
|
||||
],
|
||||
"data": [
|
||||
{"name":"hworldclock.settings.json"},
|
||||
|
|
|
@ -19,3 +19,4 @@
|
|||
0.16: make check_idle boolean setting work properly with new B2 menu
|
||||
0.17: Use default Bangle formatter for booleans
|
||||
0.18: fix idle option always getting defaulted to true
|
||||
0.19: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
"id": "pastel",
|
||||
"name": "Pastel Clock",
|
||||
"shortName": "Pastel",
|
||||
"version": "0.18",
|
||||
"version": "0.19",
|
||||
"description": "A Configurable clock with custom fonts, background and weather display. Has a cyclic information line that includes, day, date, battery, sunrise and sunset times",
|
||||
"icon": "pastel.png",
|
||||
"dependencies": {"mylocation":"app","weather":"app"},
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
var SunCalc = require("https://raw.githubusercontent.com/mourner/suncalc/master/suncalc.js");
|
||||
var SunCalc = require("suncalc"); // from modules folder
|
||||
require("f_latosmall").add(Graphics);
|
||||
const storage = require('Storage');
|
||||
const locale = require("locale");
|
||||
|
|
|
@ -13,3 +13,4 @@
|
|||
0.13: convert var/function into let
|
||||
0.14: cleanup code and fix fastload issue
|
||||
0.15: fix draw before widget hide
|
||||
0.16: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
"id": "rebble",
|
||||
"name": "Rebble Clock",
|
||||
"shortName": "Rebble",
|
||||
"version": "0.15",
|
||||
"version": "0.16",
|
||||
"description": "A Pebble style clock, with configurable background, three sidebars including steps, day, date, sunrise, sunset, long live the rebellion",
|
||||
"readme": "README.md",
|
||||
"icon": "rebble.png",
|
||||
|
@ -14,7 +14,6 @@
|
|||
"storage": [
|
||||
{"name":"rebble.app.js","url":"rebble.app.js"},
|
||||
{"name":"rebble.settings.js","url":"rebble.settings.js"},
|
||||
{"name":"rebble.img","url":"rebble.icon.js","evaluate":true},
|
||||
{"name":"suncalc","url":"suncalc.js"}
|
||||
{"name":"rebble.img","url":"rebble.icon.js","evaluate":true}
|
||||
]
|
||||
}
|
||||
|
|
|
@ -11,7 +11,7 @@ Graphics.prototype.setFontKdamThmor = function(scale) {
|
|||
|
||||
|
||||
{
|
||||
let SunCalc = require("suncalc");
|
||||
let SunCalc = require("suncalc"); // from modules folder
|
||||
const SETTINGS_FILE = "rebble.json";
|
||||
const LOCATION_FILE = "mylocation.json";
|
||||
const GLOBAL_SETTINGS = "setting.json";
|
||||
|
|
|
@ -1,143 +0,0 @@
|
|||
/*
|
||||
(c) 2011-2015, Vladimir Agafonkin
|
||||
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
|
||||
https://github.com/mourner/suncalc
|
||||
|
||||
edit for banglejs
|
||||
*/
|
||||
|
||||
(function () { 'use strict';
|
||||
|
||||
// shortcuts for easier to read formulas
|
||||
|
||||
var PI = Math.PI,
|
||||
sin = Math.sin,
|
||||
cos = Math.cos,
|
||||
tan = Math.tan,
|
||||
asin = Math.asin,
|
||||
atan = Math.atan2,
|
||||
acos = Math.acos,
|
||||
rad = PI / 180;
|
||||
|
||||
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
|
||||
|
||||
|
||||
// date/time constants and conversions
|
||||
|
||||
var dayMs = 1000 * 60 * 60 * 24,
|
||||
J1970 = 2440588,
|
||||
J2000 = 2451545;
|
||||
|
||||
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
|
||||
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); }
|
||||
function toDays(date) { return toJulian(date) - J2000; }
|
||||
|
||||
|
||||
// general calculations for position
|
||||
|
||||
var e = rad * 23.4397; // obliquity of the Earth
|
||||
|
||||
function declination(l, b) { return asin(sin(b) * cos(e) + cos(b) * sin(e) * sin(l)); }
|
||||
|
||||
|
||||
// general sun calculations
|
||||
|
||||
function solarMeanAnomaly(d) { return rad * (357.5291 + 0.98560028 * d); }
|
||||
|
||||
function eclipticLongitude(M) {
|
||||
|
||||
var C = rad * (1.9148 * sin(M) + 0.02 * sin(2 * M) + 0.0003 * sin(3 * M)), // equation of center
|
||||
P = rad * 102.9372; // perihelion of the Earth
|
||||
|
||||
return M + C + P + PI;
|
||||
}
|
||||
|
||||
var SunCalc = {};
|
||||
|
||||
|
||||
// sun times configuration (angle, morning name, evening name)
|
||||
|
||||
var times = SunCalc.times = [
|
||||
[-0.833, 'sunrise', 'sunset' ],
|
||||
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
|
||||
[ -6, 'dawn', 'dusk' ],
|
||||
[ -12, 'nauticalDawn', 'nauticalDusk'],
|
||||
[ -18, 'nightEnd', 'night' ],
|
||||
[ 6, 'goldenHourEnd', 'goldenHour' ]
|
||||
];
|
||||
|
||||
|
||||
|
||||
// calculations for sun times
|
||||
|
||||
var J0 = 0.0009;
|
||||
|
||||
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
|
||||
|
||||
function approxTransit(Ht, lw, n) { return J0 + (Ht + lw) / (2 * PI) + n; }
|
||||
function solarTransitJ(ds, M, L) { return J2000 + ds + 0.0053 * sin(M) - 0.0069 * sin(2 * L); }
|
||||
|
||||
function hourAngle(h, phi, d) { return acos((sin(h) - sin(phi) * sin(d)) / (cos(phi) * cos(d))); }
|
||||
function observerAngle(height) { return -2.076 * Math.sqrt(height) / 60; }
|
||||
|
||||
// returns set time for the given sun altitude
|
||||
function getSetJ(h, lw, phi, dec, n, M, L) {
|
||||
|
||||
var w = hourAngle(h, phi, dec),
|
||||
a = approxTransit(w, lw, n);
|
||||
return solarTransitJ(a, M, L);
|
||||
}
|
||||
|
||||
|
||||
// calculates sun times for a given date, latitude/longitude, and, optionally,
|
||||
// the observer height (in meters) relative to the horizon
|
||||
|
||||
SunCalc.getTimes = function (date, lat, lng, height) {
|
||||
|
||||
height = height || 0;
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
|
||||
dh = observerAngle(height),
|
||||
|
||||
d = toDays(date),
|
||||
n = julianCycle(d, lw),
|
||||
ds = approxTransit(0, lw, n),
|
||||
|
||||
M = solarMeanAnomaly(ds),
|
||||
L = eclipticLongitude(M),
|
||||
dec = declination(L, 0),
|
||||
|
||||
Jnoon = solarTransitJ(ds, M, L),
|
||||
|
||||
i, len, time, h0, Jset, Jrise;
|
||||
|
||||
|
||||
var result = {
|
||||
solarNoon: fromJulian(Jnoon),
|
||||
nadir: fromJulian(Jnoon - 0.5)
|
||||
};
|
||||
|
||||
for (i = 0, len = times.length; i < len; i += 1) {
|
||||
time = times[i];
|
||||
h0 = (time[0] + dh) * rad;
|
||||
|
||||
Jset = getSetJ(h0, lw, phi, dec, n, M, L);
|
||||
Jrise = Jnoon - (Jset - Jnoon);
|
||||
|
||||
result[time[1]] = fromJulian(Jrise);
|
||||
result[time[2]] = fromJulian(Jset);
|
||||
}
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
// export as Node module / AMD module / browser variable
|
||||
if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
|
||||
else if (typeof define === 'function' && define.amd) define(SunCalc);
|
||||
else window.SunCalc = SunCalc;
|
||||
|
||||
|
||||
}());
|
|
@ -0,0 +1,2 @@
|
|||
0.01: First commit
|
||||
0.02: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
|
@ -19,13 +19,21 @@ var pos = {altitude: 20, azimuth: 135};
|
|||
var noonpos = {altitude: 37, azimuth: 180};
|
||||
let idTimeout = null;
|
||||
|
||||
|
||||
|
||||
function updatePos() {
|
||||
function radToDeg(pos) {
|
||||
return { // instead of mofidying suncalc
|
||||
azimuth: Math.round((pos.azimuth / rad + 180) % 360),
|
||||
altitude: Math.round( pos.altitude / rad)
|
||||
};
|
||||
}
|
||||
coord = require("Storage").readJSON(LOCATION_FILE,1)|| {"lat":53.3,"lon":10.1,"location":"Pattensen"};
|
||||
pos = SunCalc.getPosition(Date.now(), coord.lat, coord.lon);
|
||||
pos = radToDeg(SunCalc.getPosition(Date.now(), coord.lat, coord.lon));
|
||||
times = SunCalc.getTimes(Date.now(), coord.lat, coord.lon);
|
||||
rise = times.sunrise.toString().split(" ")[4].substr(0,5);
|
||||
set = times.sunset.toString().split(" ")[4].substr(0,5);
|
||||
noonpos = SunCalc.getPosition(times.solarNoon, coord.lat, coord.lon);
|
||||
noonpos = radToDeg(SunCalc.getPosition(times.solarNoon, coord.lat, coord.lon));
|
||||
}
|
||||
|
||||
function drawSimpleClock() {
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
{
|
||||
"id": "sunclock",
|
||||
"name": "Sun Clock",
|
||||
"version": "0.01",
|
||||
"version": "0.02",
|
||||
"description": "A clock with sunset/sunrise, sun height/azimuth",
|
||||
"icon": "app.png",
|
||||
"type": "clock",
|
||||
|
@ -11,7 +11,6 @@
|
|||
"allow_emulator": true,
|
||||
"storage": [
|
||||
{"name":"sunclock.app.js","url":"app.js"},
|
||||
{"name":"sunclock.img","url":"app-icon.js","evaluate":true},
|
||||
{"name":"suncalc.js","url":"suncalc.js"}
|
||||
{"name":"sunclock.img","url":"app-icon.js","evaluate":true}
|
||||
]
|
||||
}
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
0.01: New App!
|
||||
0.02: Add sunrise/sunset. Fix timer bugs.
|
||||
0.03: Use default Bangle formatter for booleans
|
||||
0.04: Use 'modules/suncalc.js' to avoid it being copied 8 times for different apps
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -2,7 +2,7 @@
|
|||
"id": "timerclk",
|
||||
"name": "Timer Clock",
|
||||
"shortName":"Timer Clock",
|
||||
"version":"0.03",
|
||||
"version":"0.04",
|
||||
"description": "A clock with stopwatches, timers and alarms build in.",
|
||||
"icon": "app-icon.png",
|
||||
"type": "clock",
|
||||
|
|
|
@ -1,17 +1,34 @@
|
|||
/* Module suncalc.js
|
||||
/*
|
||||
(c) 2011-2015, Vladimir Agafonkin
|
||||
SunCalc is a JavaScript library for calculating sun/moon position and light phases.
|
||||
https://github.com/mourner/suncalc
|
||||
|
||||
PB: Usage:
|
||||
E.setTimeZone(2); // 1 = MEZ, 2 = MESZ
|
||||
SunCalc = require("suncalc.js");
|
||||
pos = SunCalc.getPosition(Date.now(), 53.3, 10.1);
|
||||
times = SunCalc.getTimes(Date.now(), 53.3, 10.1);
|
||||
rise = times.sunrise; // Date object
|
||||
rise_str = rise.getHours() + ':' + rise.getMinutes(); //hh:mm
|
||||
Copyright (c) 2014, Vladimir Agafonkin
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
1. Redistributions of source code must retain the above copyright notice, this list of
|
||||
conditions and the following disclaimer.
|
||||
|
||||
2. Redistributions in binary form must reproduce the above copyright notice, this list
|
||||
of conditions and the following disclaimer in the documentation and/or other materials
|
||||
provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
||||
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
||||
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
*/
|
||||
var exports={};
|
||||
|
||||
(function () { 'use strict';
|
||||
|
||||
// shortcuts for easier to read formulas
|
||||
|
||||
|
@ -26,6 +43,7 @@ var PI = Math.PI,
|
|||
|
||||
// sun calculations are based on http://aa.quae.nl/en/reken/zonpositie.html formulas
|
||||
|
||||
|
||||
// date/time constants and conversions
|
||||
|
||||
var dayMs = 1000 * 60 * 60 * 24,
|
||||
|
@ -33,7 +51,7 @@ var dayMs = 1000 * 60 * 60 * 24,
|
|||
J2000 = 2451545;
|
||||
|
||||
function toJulian(date) { return date.valueOf() / dayMs - 0.5 + J1970; }
|
||||
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); } // PB: onece removed + 0.5; included it again 4 Jan 2021
|
||||
function fromJulian(j) { return new Date((j + 0.5 - J1970) * dayMs); }
|
||||
function toDays(date) { return toJulian(date) - J2000; }
|
||||
|
||||
|
||||
|
@ -81,9 +99,13 @@ function sunCoords(d) {
|
|||
};
|
||||
}
|
||||
|
||||
|
||||
var SunCalc = {};
|
||||
|
||||
|
||||
// calculates sun position for a given date and latitude/longitude
|
||||
|
||||
exports.getPosition = function (date, lat, lng) {
|
||||
SunCalc.getPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
|
@ -93,19 +115,32 @@ exports.getPosition = function (date, lat, lng) {
|
|||
H = siderealTime(d, lw) - c.ra;
|
||||
|
||||
return {
|
||||
azimuth: Math.round((azimuth(H, phi, c.dec) / rad + 180) % 360), // PB: converted to deg
|
||||
altitude: Math.round( altitude(H, phi, c.dec) / rad) // PB: converted to deg
|
||||
azimuth: azimuth(H, phi, c.dec),
|
||||
altitude: altitude(H, phi, c.dec)
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
// sun times configuration (angle, morning name, evening name)
|
||||
|
||||
var times = [
|
||||
[-0.833, 'sunrise', 'sunset' ]
|
||||
var times = SunCalc.times = [
|
||||
[-0.833, 'sunrise', 'sunset' ],
|
||||
[ -0.3, 'sunriseEnd', 'sunsetStart' ],
|
||||
[ -6, 'dawn', 'dusk' ],
|
||||
[ -12, 'nauticalDawn', 'nauticalDusk'],
|
||||
[ -18, 'nightEnd', 'night' ],
|
||||
[ 6, 'goldenHourEnd', 'goldenHour' ]
|
||||
];
|
||||
|
||||
// adds a custom time to the times config
|
||||
|
||||
SunCalc.addTime = function (angle, riseName, setName) {
|
||||
times.push([angle, riseName, setName]);
|
||||
};
|
||||
|
||||
|
||||
// calculations for sun times
|
||||
|
||||
var J0 = 0.0009;
|
||||
|
||||
function julianCycle(d, lw) { return Math.round(d - J0 - lw / (2 * PI)); }
|
||||
|
@ -128,7 +163,7 @@ function getSetJ(h, lw, phi, dec, n, M, L) {
|
|||
// calculates sun times for a given date, latitude/longitude, and, optionally,
|
||||
// the observer height (in meters) relative to the horizon
|
||||
|
||||
exports.getTimes = function (date, lat, lng, height) {
|
||||
SunCalc.getTimes = function (date, lat, lng, height) {
|
||||
|
||||
height = height || 0;
|
||||
|
||||
|
@ -189,7 +224,7 @@ function moonCoords(d) { // geocentric ecliptic coordinates of the moon
|
|||
};
|
||||
}
|
||||
|
||||
getMoonPosition = function (date, lat, lng) {
|
||||
SunCalc.getMoonPosition = function (date, lat, lng) {
|
||||
|
||||
var lw = rad * -lng,
|
||||
phi = rad * lat,
|
||||
|
@ -216,7 +251,7 @@ getMoonPosition = function (date, lat, lng) {
|
|||
// based on http://idlastro.gsfc.nasa.gov/ftp/pro/astro/mphase.pro formulas and
|
||||
// Chapter 48 of "Astronomical Algorithms" 2nd edition by Jean Meeus (Willmann-Bell, Richmond) 1998.
|
||||
|
||||
getMoonIllumination = function (date) {
|
||||
SunCalc.getMoonIllumination = function (date) {
|
||||
|
||||
var d = toDays(date || new Date()),
|
||||
s = sunCoords(d),
|
||||
|
@ -243,7 +278,7 @@ function hoursLater(date, h) {
|
|||
|
||||
// calculations for moon rise/set times are based on http://www.stargazing.net/kepler/moonrise.html article
|
||||
|
||||
getMoonTimes = function (date, lat, lng, inUTC) {
|
||||
SunCalc.getMoonTimes = function (date, lat, lng, inUTC) {
|
||||
var t = new Date(date);
|
||||
if (inUTC) t.setUTCHours(0, 0, 0, 0);
|
||||
else t.setHours(0, 0, 0, 0);
|
||||
|
@ -296,3 +331,11 @@ getMoonTimes = function (date, lat, lng, inUTC) {
|
|||
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
// export as Node module / AMD module / browser variable
|
||||
if (typeof exports === 'object' && typeof module !== 'undefined') module.exports = SunCalc;
|
||||
else if (typeof define === 'function' && define.amd) define(SunCalc);
|
||||
else window.SunCalc = SunCalc;
|
||||
|
||||
}());
|
Loading…
Reference in New Issue