let simulated = false; let file_version = 2; let code_key = 47490; let interests_colors = [ 0x780F, // Bakery, purple 0x001F, // DrinkingWater, blue 0x07FF, // Toilets, cyan 0x7BEF, // BikeShop, dark grey 0xAFE5, // ChargingStation, green yellow 0x7800, // Bank, maroon 0xF800, // Supermarket, red 0xF81F, // Table, pink 0xFD20, // Artwork, orange 0x07E0, // Pharmacy, green ]; function binary_search(array, x) { let start = 0, end = array.length - 1; while (start <= end){ let mid = Math.floor((start + end) / 2); if (array[mid] < x) start = mid + 1; else end = mid - 1; } return start; } class Status { constructor(path) { this.path = path; this.on_path = false; // are we on the path or lost ? this.position = null; // where we are this.cos_direction = null; // cos of where we look at this.sin_direction = null; // sin of where we look at this.current_segment = null; // which segment is closest this.reaching = null; // which waypoint are we reaching ? this.distance_to_next_point = null; // how far are we from next point ? let r = [0]; // let's do a reversed prefix computations on all distances: // loop on all segments in reversed order let previous_point = null; for (let i = this.path.len - 1; i >= 0; i--) { let point = this.path.point(i); if (previous_point !== null) { r.unshift(r[0] + point.distance(previous_point)); } previous_point = point; } this.remaining_distances = r; // how much distance remains at start of each segment } update_position(new_position, direction) { if (Bangle.isLocked() && this.position !== null && new_position.lon == this.position.lon && new_position.lat == this.position.lat) { return; } this.cos_direction = Math.cos(-direction - Math.PI / 2.0); this.sin_direction = Math.sin(-direction - Math.PI / 2.0); this.position = new_position; // detect segment we are on now let next_segment = this.path.nearest_segment(this.position, Math.max(0, this.current_segment-1), Math.min(this.current_segment+2, this.path.len - 1), this.cos_direction, this.sin_direction); if (this.is_lost(next_segment)) { // it did not work, try anywhere next_segment = this.path.nearest_segment(this.position, 0, this.path.len - 1, this.cos_direction, this.sin_direction); } // now check if we strayed away from path or back to it let lost = this.is_lost(next_segment); if (this.on_path == lost) { // if status changes if (lost) { Bangle.buzz(); // we lost path setTimeout(()=>Bangle.buzz(), 500); } this.on_path = !lost; } this.current_segment = next_segment; // check if we are nearing the next point on our path and alert the user let next_point = this.current_segment + 1; this.distance_to_next_point = Math.ceil(this.position.distance(this.path.point(next_point))); if (this.reaching != next_point && this.distance_to_next_point <= 20) { this.reaching = next_point; let reaching_waypoint = this.path.is_waypoint(next_point); if (reaching_waypoint) { Bangle.buzz(); if (Bangle.isLocked()) { Bangle.setLocked(false); } } } // re-display unless locked if (!Bangle.isLocked() || simulated) { this.display(); } } remaining_distance() { return this.remaining_distances[this.current_segment+1] + this.position.distance(this.path.point(this.current_segment+1)); } is_lost(segment) { let distance_to_nearest = this.position.fake_distance_to_segment(this.path.point(segment), this.path.point(segment+1)); let meters = 6371e3 * distance_to_nearest; return (meters > 20); } display() { g.clear(); this.display_map(); this.display_interest_points(); this.display_stats(); Bangle.drawWidgets(); } display_interest_points() { // this is the algorithm in case we have a lot of interest points // let's draw all points for 5 segments centered on current one let starting_group = Math.floor(Math.max(this.current_segment-2, 0) / 3); let ending_group = Math.floor(Math.min(this.current_segment+2, this.path.len-2) / 3); let starting_bucket = binary_search(this.path.interests_starts, starting_group); let ending_bucket = binary_search(this.path.interests_starts, ending_group+0.5); // we have 5 points per bucket let end_index = Math.min(this.path.interests_types.length - 1, ending_bucket*5); for (let i = starting_bucket*5 ; i <= end_index ; i++) { let index = this.path.interests_on_path[i]; let interest_point = this.path.interest_point(index); let color = this.path.interest_color(i); let c = interest_point.coordinates(this.position, this.cos_direction, this.sin_direction); g.setColor(color).fillCircle(c[0], c[1], 5); } } display_stats() { let rounded_distance = Math.round(this.remaining_distance() / 100) / 10; let total = Math.round(this.remaining_distances[0] / 100) / 10; let now = new Date(); let minutes = now.getMinutes().toString(); if (minutes.length < 2) { minutes = '0' + minutes; } let hours = now.getHours().toString(); g.setFont("6x8:2").setColor(g.theme.fg).drawString(hours + ":" + minutes, 0, g.getHeight() - 49); g.drawString("d. " + rounded_distance + "/" + total, 0, g.getHeight() - 32); g.drawString("seg." + (this.current_segment + 1) + "/" + this.path.len + " " + this.distance_to_next_point + "m", 0, g.getHeight() - 15); } display_map() { // don't display all segments, only those neighbouring current segment // this is most likely to be the correct display // while lowering the cost a lot // // note that all code is inlined here to speed things up from 400ms to 200ms let start = Math.max(this.current_segment - 3, 0); let end = Math.min(this.current_segment + 5, this.path.len - 1); let pos = this.position; let cos = this.cos_direction; let sin = this.sin_direction; let points = this.path.points; let cx = pos.lon; let cy = pos.lat; let half_width = g.getWidth() / 2; let half_height = g.getHeight() / 2; let previous_x = null; let previous_y = null; for (let i = start ; i < end ; i++) { let tx = (points[2*i] - cx) * 40000.0; let ty = (points[2*i+1] - cy) * 40000.0; let rotated_x = tx * cos - ty * sin; let rotated_y = tx * sin + ty * cos; let x = half_width - Math.round(rotated_x); // x is inverted let y = half_height + Math.round(rotated_y); if (previous_x !== null) { if (i == this.current_segment + 1) { g.setColor(0.0, 1.0, 0.0); } else { g.setColor(1.0, 0.0, 0.0); } g.drawLine(previous_x, previous_y, x, y); } if (this.path.is_waypoint(i-1)) { g.setColor(g.theme.fg); g.fillCircle(previous_x, previous_y, 6); g.setColor(g.theme.bg); g.fillCircle(previous_x, previous_y, 5); } g.setColor(g.theme.fg); g.fillCircle(previous_x, previous_y, 4); g.setColor(g.theme.bg); g.fillCircle(previous_x, previous_y, 3); previous_x = x; previous_y = y; } if (this.path.is_waypoint(end-1)) { g.setColor(g.theme.fg); g.fillCircle(previous_x, previous_y, 6); g.setColor(g.theme.bg); g.fillCircle(previous_x, previous_y, 5); } g.setColor(g.theme.fg); g.fillCircle(previous_x, previous_y, 4); g.setColor(g.theme.bg); g.fillCircle(previous_x, previous_y, 3); // now display ourselves g.setColor(g.theme.fgH); g.fillCircle(half_width, half_height, 5); } } class Path { constructor(filename) { let buffer = require("Storage").readArrayBuffer(filename); let offset = 0; // header let header = Uint16Array(buffer, offset, 5); offset += 5 * 2; let key = header[0]; let version = header[1]; let points_number = header[2]; if ((key != code_key)||(version>file_version)) { E.showMessage("Invalid gpc file"); return; } // path points this.points = Float64Array(buffer, offset, points_number*2); // interest points offset += 8 * points_number * 2; let interests_number = header[3]; this.interests_coordinates = Float64Array(buffer, offset, interests_number * 2); offset += 8 * interests_number * 2; this.interests_types = Uint8Array(buffer, offset, interests_number); offset += interests_number; // interests on path let interests_on_path_number = header[4]; this.interests_on_path = Uint16Array(buffer, offset, interests_on_path_number); offset += 2 * interests_on_path_number; let starts_length = Math.ceil(interests_on_path_number / 5.0); this.interests_starts = Uint16Array(buffer, offset, starts_length); offset += 2 * starts_length; } // if start, end or steep direction change // we are buzzing and displayed specially is_waypoint(point_index) { if ((point_index == 0)||(point_index == this.len -1)) { return true; } else { let p1 = this.point(point_index-1); let p2 = this.point(point_index); let p3 = this.point(point_index+1); let d1 = p2.minus(p1); let d2 = p3.minus(p2); let a1 = Math.atan2(d1.lat, d1.lon); let a2 = Math.atan2(d2.lat, d2.lon); let direction_change = Math.abs(a2-a1); return ((direction_change > Math.PI / 3.0)&&(direction_change < Math.PI * 5.0/3.0)); } } // execute op on all segments. // start is index of first wanted segment // end is 1 after index of last wanted segment on_segments(op, start, end) { let previous_point = null; for (let i = start; i < end + 1; i++) { let point = new Point(this.points[2 * i], this.points[2 * i + 1]); if (previous_point !== null) { op(previous_point, point, i); } previous_point = point; } } // return point at given index point(index) { let lon = this.points[2 * index]; let lat = this.points[2 * index + 1]; return new Point(lon, lat); } interest_point(index) { let lon = this.interests_coordinates[2 * index]; let lat = this.interests_coordinates[2 * index + 1]; return new Point(lon, lat); } interest_color(index) { return interests_colors[this.interests_types[index]]; } // return index of segment which is nearest from point. // we need a direction because we need there is an ambiguity // for overlapping segments which are taken once to go and once to come back. // (in the other direction). nearest_segment(point, start, end, cos_direction, sin_direction) { // we are going to compute two min distances, one for each direction. let indices = [0, 0]; let mins = [Number.MAX_VALUE, Number.MAX_VALUE]; this.on_segments(function(p1, p2, i) { // we use the dot product to figure out if oriented correctly let distance = point.fake_distance_to_segment(p1, p2); let diff = p2.minus(p1); let dot = cos_direction * diff.lon + sin_direction * diff.lat; let orientation = + (dot < 0); // index 0 is good orientation if (distance <= mins[orientation]) { mins[orientation] = distance; indices[orientation] = i - 1; } }, start, end); // by default correct orientation (0) wins // but if other one is really closer, return other one if (mins[1] < mins[0] / 10.0) { return indices[1]; } else { return indices[0]; } } get len() { return this.points.length / 2; } } class Point { constructor(lon, lat) { this.lon = lon; this.lat = lat; } coordinates(current_position, cos_direction, sin_direction) { let translated = this.minus(current_position).times(40000.0); let rotated_x = translated.lon * cos_direction - translated.lat * sin_direction; let rotated_y = translated.lon * sin_direction + translated.lat * cos_direction; return [ g.getWidth() / 2 - Math.round(rotated_x), // x is inverted g.getHeight() / 2 + Math.round(rotated_y) ]; } minus(other_point) { let xdiff = this.lon - other_point.lon; let ydiff = this.lat - other_point.lat; return new Point(xdiff, ydiff); } plus(other_point) { return new Point(this.lon + other_point.lon, this.lat + other_point.lat); } length_squared(other_point) { let d = this.minus(other_point); return (d.lon * d.lon + d.lat * d.lat); } times(scalar) { return new Point(this.lon * scalar, this.lat * scalar); } dot(other_point) { return this.lon * other_point.lon + this.lat * other_point.lat; } distance(other_point) { //see https://www.movable-type.co.uk/scripts/latlong.html const R = 6371e3; // metres const phi1 = this.lat * Math.PI / 180; const phi2 = other_point.lat * Math.PI / 180; const deltaphi = (other_point.lat - this.lat) * Math.PI / 180; const deltalambda = (other_point.lon - this.lon) * Math.PI / 180; const a = Math.sin(deltaphi / 2) * Math.sin(deltaphi / 2) + Math.cos(phi1) * Math.cos(phi2) * Math.sin(deltalambda / 2) * Math.sin(deltalambda / 2); const c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a)); return R * c; // in metres } fake_distance(other_point) { return Math.sqrt(this.length_squared(other_point)); } fake_distance_to_segment(v, w) { // from : https://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment // Return minimum distance between line segment vw and point p let l2 = v.length_squared(w); // i.e. |w-v|^2 - avoid a sqrt if (l2 == 0.0) { return this.distance(v); // v == w case } // Consider the line extending the segment, parameterized as v + t (w - v). // We find projection of point p onto the line. // It falls where t = [(p-v) . (w-v)] / |w-v|^2 // We clamp t from [0,1] to handle points outside the segment vw. let t = Math.max(0, Math.min(1, (this.minus(v)).dot(w.minus(v)) / l2)); let projection = v.plus((w.minus(v)).times(t)); // Projection falls on the segment return this.fake_distance(projection); } } Bangle.loadWidgets(); let fake_gps_point = 0.0; function simulate_gps(status) { if (fake_gps_point > status.path.len -1) { return; } let point_index = Math.floor(fake_gps_point); if (point_index >= status.path.len) { return; } let p1 = status.path.point(point_index); let p2 = status.path.point(point_index + 1); let alpha = fake_gps_point - point_index; let pos = p1.times(1-alpha).plus(p2.times(alpha)); let old_pos = status.position; fake_gps_point += 0.2; // advance simulation let direction = Math.atan2(pos.lat - old_pos.lat, pos.lon - old_pos.lon); status.update_position(pos, direction); } function drawMenu() { const menu = { '': { 'title': 'choose trace' } }; var files = require("Storage").list(".gpc"); for (var i=0; i